当前位置:首页>> 大数据
大数据

大数据技术是指存储掌握庞大的数据信息,并对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
        大数据需要特殊的技术,有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。 有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。 大数据的价值体现在以下几个方面:1)对大量消费者提供产品或服务的企业可以利用大数据进行营销;2) 做小而美模式的中长尾企业可以利用大数据做服务转型;3) 面临互联网压力之下须转型的传统企业需要与时俱进充分利用大数据的价值。
        企业组织利用相关数据和分析可以帮助它们降低成本、提高 效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,及时解析故障、问题和缺陷的根源;
        为成千上万的快递车辆规划实时交通路线,躲避拥堵;分析所有SKU,以利润大化为目标来定价和清理库存;根据客户的购买习惯,为其推送他可能感兴趣的优惠信息;从大量客户中快速识别出客户;使用点击流分析和数据挖掘来规避欺诈行为。
        大数据分析的产生旨在于IT管理,企业可以将实时数据流分析和历史相关数据相结合,然后大数据分析并发现它们所需的模型。反过来,帮助预测和预防未来运行中断和性能问题。进一步来讲,他们可以利用大数据了解使用模型以及地理趋势,进而加深大数据对重要用户的洞察力。 他们也可以追踪和记录网络行为,大数据轻松地识别业务影响;随着对服务利用的深刻理解加快利润增长;同时跨多系统收集数据发展IT服务目录。